Environmental Protection Agency

semichemical chemical recovery combustion unit.

- (d) CO_2 , biogenic CO_2 , CH_4 , and N_2O emissions from each kraft or soda pulp mill lime kiln.
- (e) CO_2 emissions from addition of makeup chemicals (CaCO₃, Na_2CO_3) in the chemical recovery areas of chemical pulp mills.
- (f) CO₂, CH₄, and N₂O combustion emissions from each stationary combustion unit. You must calculate and report these emissions under subpart C of this part (General Stationary Fuel Combustion Sources) by following the requirements of subpart C.

§98.273 Calculating GHG emissions.

(a) For each chemical recovery furnace located at a kraft or soda facility, you must determine CO₂, biogenic CO₂, CH₄, and N₂O emissions using the procedures in paragraphs (a)(1) through (a)(3) of this section. CH₄ and N₂O emissions must be calculated as the sum of

emissions from combustion of fossil fuels and combustion of biomass in spent liquor solids.

- (1) Calculate fossil fuel-based ${\rm CO_2}$ emissions from direct measurement of fossil fuels consumed and default emissions factors according to the Tier 1 methodology for stationary combustion sources in §98.33(a)(1).
- (2) Calculate fossil fuel-based CH_4 and N_2O emissions from direct measurement of fossil fuels consumed, default HHV, and default emissions factors and convert to metric tons of CO_2 equivalent according to the methodology for stationary combustion sources in $\S 98.33(c)$.
- (3) Calculate biogenic CO_2 emissions and emissions of CH_4 and N_2O from biomass using measured quantities of spent liquor solids fired, site-specific HHV, and default or site-specific emissions factors, according to Equation AA-1 of this section:

$$CO_2$$
, CH_4 , or N_2O from biomass = $(0.907.18)*Solids*HHV*EF$ (Eq. AA-1)

Where:

 ${
m CO_2}, {
m CH_4}, {
m or} {
m N_2O}, {
m from \ Biomass} = {
m Biogenic} {
m CO_2}$ emissions or emissions of ${
m CH_4}$ or ${
m N_2O}$ from spent liquor solids combustion (metric tons per year).

Solids = Mass of spent liquor solids combusted (short tons per year) determined according to §98.274(b).

HHV = Annual high heat value of the spent liquor solids (mmBtu per kilogram) determined according to §98.274(b).

EF = Default emission factor for CO₂, CH₄, or N₂O, from Table AA-1 of this subpart (kg CO₂, CH₄, or N₂O per mmBtu).

0.90718 = Conversion factor from short tons to metric tons.

(b) For each chemical recovery combustion unit located at a sulfite or stand-alone semichemical facility, you must determine CO_2 , CH_4 , and N_2O emissions using the procedures in paragraphs (b)(1) through (b)(4) of this section:

- (1) Calculate fossil CO₂ emissions from fossil fuels from direct measurement of fossil fuels consumed and default emissions factors according to the Tier 1 Calculation Methodology for stationary combustion sources in \$98.33(a)(1).
- (2) Calculate CH₄ and N₂O emissions from fossil fuels from direct measurement of fossil fuels consumed, default HHV, and default emissions factors and convert to metric tons of CO₂ equivalent according to the methodology for stationary combustion sources in §98.33(c).
- (3) Calculate biogenic CO₂ emissions using measured quantities of spent liquor solids fired and the carbon content of the spent liquor solids, according to Equation AA-2 of this section:

Biogenic
$$CO_2 = \frac{44}{12} * \text{Solids} * CC * (0.90718)$$
 (Eq. AA-2)

§ 98.274

Where:

Biogenic CO₂ = Annual CO₂ mass emissions for spent liquor solids combustion (metric tons per year).

Solids = Mass of the spent liquor solids combusted (short tons per year) determined according to §98.274(b).

CC = Annual carbon content of the spent liquor solids, determined according to §98.274(b) (percent by weight, expressed as a decimal fraction, e.g., 95% = 0.95).

44/12 = Ratio of molecular weights, CO₂ to carbon.

0.90718 = Conversion from short tons to metric tons.

- (4) Calculate CH_4 and N_2O emissions from biomass using Equation AA–1 of this section and the default CH_4 and N_2O emissions factors for kraft facilities in Table AA–1 of this subpart and convert the CH_4 or N_2O emissions to metric tons of CO_2 equivalent by multiplying each annual CH_4 and N_2O emissions total by the appropriate global warming potential (GWP) factor from Table A–1 of subpart A of this part.
- (c) For each pulp mill lime kiln located at a kraft or soda facility, you must determine CO_2 , CH_4 , and N_2O emissions using the procedures in paragraphs (c)(1) through (c)(3) of this section:
- (1) Calculate CO₂ emissions from fossil fuel from direct measurement of

fossil fuels consumed and default HHV and default emissions factors, according to the Tier 1 Calculation Methodology for stationary combustion sources in $\S98.33(a)(1)$; use the default HHV listed in Table C–1 of subpart C and the default CO₂ emissions factors listed in Table AA–2 of this subpart.

- (2) Calculate CH_4 and N_2O emissions from fossil fuel from direct measurement of fossil fuels consumed, default HHV, and default emissions factors and convert to metric tons of CO_2 equivalent according to the methodology for stationary combustion sources in §98.33(c); use the default HHV listed in Table C-1 of subpart C and the default CH_4 and N_2O emissions factors listed in Table AA-2 of this subpart.
- (3) Biogenic CO_2 emissions from conversion of $CaCO_3$ to CaO are included in the biogenic CO_2 estimates calculated for the chemical recovery furnace in paragraph (a)(3) of this section.
- (d) For makeup chemical use, you must calculate CO_2 emissions by using direct or indirect measurement of the quantity of chemicals added and ratios of the molecular weights of CO_2 and the makeup chemicals, according to Equation AA-3 of this section:

$$CO_2 = \left[M_{\left(CaCO_3 \right)} * \frac{44}{100} + M_{\left(Na_2CO_3 \right)} \frac{44}{105.99} \right] * 1000 \ kg/metric \ ton$$
 (Eq. AA-3)

Where:

 $CO_2 = CO_2$ mass emissions from makeup chemicals (kilograms/yr).

M ($CaCO_3$) = Make-up quantity of $CaCO_3$ used for the reporting year (metric tons per year).

M (NaCO₃) = Make-up quantity of Na₂CO₃ used for the reporting year (metric tons per year).

 $44 = Molecular weight of CO_2$.

 $100 = Molecular weight of CaCO_3$.

105.99 = Molecular weight of Na₂CO₃.

§ 98.274 Monitoring and QA/QC requirements.

(a) Each facility subject to this subpart must quality assure the GHG emissions data according to the applicable requirements in §98.34. All QA/QC

data must be available for inspection upon request.

- (b) Fuel properties needed to perform the calculations in Equations AA-1 and AA-2 of this subpart must be determined according to paragraphs (b)(1) through (b)(3) of this section.
- (1) High heat values of black liquor must be determined no less than annually using T684 om-06 Gross Heating Value of Black Liquor, TAPPI (incorporated by reference, see §98.7). If measurements are performed more frequently than annually, then the high heat value used in Equation AA-1 of this subpart must be based on the average of the representative measurements made during the year.